US009404968B1

a2z United States Patent (10) Patent No.: US 9,404,968 B1
Draper 45) Date of Patent: Aug. 2, 2016
(54) SYSTEM AND METHODS FOR DEBUG 2006/0156067 Al* 7/2006 Swoboda ... GOIR 31/31705
CONNECTIVITY DISCOVERY 714/38.13
2007/0064852 ALl* 3/2007 Jonescc... GOG6F 1/04
(71) Applicant: Altera Corporation, San Jose, CA (US) 375/356
3k
(72) Inventor: Andrew Draper, High Wycombe (GB) 2008/0005366 Al 12008 Raatni oo GO6E ;%2/;‘
(73) Assignee: Altera Corporation, San Jose, CA (US) 2008/0114967 AL* 52008 Saen ... G06F7}/23/§§§
(*) Notice: Subject to any disclaimer, the term of this 2009/0094566 Al1* 4/2009 Bueti GO6K 19/067
patent is extended or adjusted under 33 2012/0323409 Al* 12/2012 Wellbrook GO6F Zé/ﬁégg
€lIbrookK
U.S.C. 154(b) by 294 days. 701/3
(21) Appl. No.: 14/063,957 2013/0090887 Al* 4/2013 Deogharia GOIR 31/73012%?2(5)
(22) Filed: Oct. 25, 2013 2013/0125204 Al 5/2013 LaFeveretal.
(51) Int.Cl 2014/0098796 Al* 42014 XU woovvvvverroen. HOAL 12/5692
s 370/336
GOIR 3173177 (2006.01)
GOIR 31/40 (2014.01) FOREIGN PATENT DOCUMENTS
GOIR 31/317 (2006.01)
(52) US.CL WO 2013147730 10/2013
CPC GOIR 31/3177 (2013.01); GOIR 31/31701 ¥ cited b :
(2013.01); GOIR 31/31705 (2013.01) ~ C oo o) Sxaminer
(58) Field of Classification Search Primary Examiner — Cynthia Britt
CPC oo GOIR 31/3177; GO1R 31/31701; Assistant Examiner — Dipakkumar Gandhi
GOIR 31/318516; GO1R 31/318519; GO1R (74) Attorney, Agent, or Firm — Treyz Law Group, P.C.;
31/318536; GOIR 31/318541; GO1R 31/3193; Andrew C. Milhollin
GO1R 31/31705
See application file for complete search history. 67 ABSTRACT
(56) References Cited An integrated circuit device such as a programmable inte-
grated circuit may include interface circuits and associated
U.S. PATENT DOCUMENTS identification circuits. The identification circuits may be
coupled to shared mixer circuitry that performs a logic func-
5,299,136 A * 3/1994 Babakanian HO3K 19/1738 tion on mixer input signals received from the identification
714/727 circuits of that integrated circuit to produce a mixer output
g,;gg,gg;‘ ﬁ . 12; }ggg glflllPPTOth etal. GLLB 5/00 signal. Debug computing equipment may be used to test
2%, CITENS oo 361551 integrated circuits having mixer circuitry. The debug comput-
5862338 A * 1/1999 Walker HOAL 49/35 1 ing equipment may have interfaces that receive connections
TR o e 709/224 to interface circuits of the integrated circuits. The debug com-
6,530,047 Bl 3/2003 Edwards et al. puting equipment may communicate with the mixer circuitry
6,658,478 Bl * 12/2003 Singhalcccc.c..... HO04L 67/42 of' the integrated circuits through each of the connected inter-
709/232 face circuits to identify groups of interfaces that are con-
7,984,347 B2 N 7/2011 Swoboda nected to different devices. For each device, the debug com-
7990994 Bl §/2011 Yeh oo HO4L é%‘}g;‘i puting equipment may select an interface from the
8.072.237 B1* 122011 Rahim ... HO3K 19/17784 corresponding group of interfaces and perform test debug
T 326/101 operations over the selected interface.
2005/0216629 Al* 9/2005 Lindsay GOGF 13/4291
710/100 25 Claims, 10 Drawing Sheets
/200
e
HOST
DEBUG
EQUIPMENT
[use 1120 [pcle }122 [ETHERNET |18 [utAG |14
1061
106~ [-106 pesuc | [oesuc|
AGENT AGENT g
L\—‘ 106
132 132 106 L~106 1061
04
DEBUG | | DEBUG | DEBUG |
AGENT AGENT AGENT

DEBUG

132

DEBUG
AGENT

132

Y
1041 10-2

)

132 132

y
10-3

132

U.S. Patent Aug. 2, 2016 Sheet 1 of 10 US 9,404,968 B1

i i f’!ﬁ _ } i l /"'18
PROGRAMMABLE PROGRAMMARLE
LOGIC <}:> LOGIC

Oz / a 0
3 J 20 1?‘\-@
| | L
) ks T 4.
) PROGRAMMARLE | PROGRAMMABLE
_ LOGIC LOGIC ()
_ G oD) e
= 1T 7 N
S ii . 20 20

il

i

1L

P

US 9,404,968 B1

Sheet 2 of 10

Aug. 2, 2016

U.S. Patent

o, ¢ 9ld
poL—{ AHLNOHIO Al |+ y
i - . . .“m\w
: . . v OVLP / m oeL
zer— INZovongag H P 501 1\ N
LD 5y, PH /» : A
L) 7y $301A3Q
peL— AMLNoHID O |+ M \ - o/
% H.«-M
: 310d
— InZovonsaa H _ : Y yin! ek T
zgl— ANIOV On _ 21— pyoL| | 4 ESEBREE
_ o, /r onaaq
pEL - >mt:o.§u§ H /fk — _ Py T —
: | | 450 \ m 2L
zei—{ LNIOVOngag [_ o evob| | 2 zzy || AuLinowio
_ uo,, 0 fr ONISSIOOU
peL—{ AMLNOHO Al |4 /_Jk ._ any
. | 31 79O
: | T andaka Ty , AOVHOLS
zeL— LIN3OV ONE3a _l_ wow\.\ Z-y0L m 0d \
, _ 9ei
_ INIOV _
61— v], wo \. .
|__dvl TyNois - JETSERTE ,_,zmnﬁmw_m@m
981 Q3TN ANOWIN ull T \‘ _ 1SOH
e _ L L3N&3HLE [T T A A
Wi~ _ONy 39vdols [a0L—" LN PR SNOILYOINNIINGO
0L —] ASOWAW F0IA3Q 200
S Loy
peL] AMLINOYID O eI

US 9,404,968 B1

Sheet 3 of 10

Aug. 2, 2016

U.S. Patent

_ o0l

AHLINDHO
TYNG3LX3
Ol

, _ 901

€ oOld
e AaLnouD Al /www
LINOYIO
sey A INFOV ONE3aa M FOV4HIINI
| i
e INIDY
goL - SHILSOIM oVl TvNoig | -
A — N s
EENSRER S SRS SIVEUBLN
P81 _odiNoD am&&%mw/@%o_zmﬁt_ _ A
AHLINDYIO 98}~ best
TYNUALN]
pe1 pei—] AHLINDYHIO Gl
LIND¥IO GALYHOALNI
)
0L

US 9,404,968 B1

Sheet 4 of 10

Aug. 2, 2016

U.S. Patent

¥ Old
€01 Z-0} b-01
§) §
rA3) zel zey zst 43}
§ - \ N §
LNZDY LINZOVY LNZOY INFOV | 1 INIDV
oNE3d SNa3aa 9N83q GIEE or183a
-0}
y
90} Y 4
§ INZOV LINIOV N
SHEEN SHEE 901 — _~901
_~80%
pzL— OVLr g1 LINYIHLE | zzL-— @10d pzL-— 9sn
LNINdIND3
ona3d
1SOH
y
20k
ooz

US 9,404,968 B1

Sheet 5 of 10

Aug. 2, 2016

U.S. Patent

> AHLIADHID

> TYNEILXE
QL

G 94
o LINZDY LNoyn szQVtQuEO .
. cel 9N830 | NnowosEs JOVSHILNI
\ —LNoYD Ll 0)
_ oL — M3 INIA NOIIIINNGD 201 23
A.. - . . 901~
& ale! . S
INZDY unowo | BAo L unowio |
@@_wmw% ON83Q NOLLOTTIS JOVIHILNG [
§ et ..._I v T
el - HFHLINGA NOILOINNOD 24 s 90
AHLNOHWDE -~ — - - [oommmmmmmmmeos N
HIAXIN oo) 904 1
y : 5
ol » INEG unodo | 10 unowo | |
001 AR aNgad NOILOTIES JOVAHILINL
v [unowo il 7 T
el — ¥3IALNEG! MOILOINNOD -, .
LINOXID GILVHOILNI
\
oL

L
v g

U.S. Patent Aug. 2, 2016 Sheet 6 of 10 US 9,404,968 B1

[164
MIXER CIRCUITRY
72
166 My |
N CLOCK f“?m
= | crossiNG |,
COMBINATIONAL
i LOGIC
L 178
166 o et 2
AN CLOCK IN, o
© "| crossiNG >
172 | |
{ | ouT
166 178
A crock INg e v__ [
CROSSING _ | clka—] REGISTER :
I_“_____J

FIG. 6

U.S. Patent Aug. 2, 2016 Sheet 7 of 10 US 9,404,968 B1

,// 200

WITH HOST DEBUG EQUIPMENT,

DIRECT EACH CONNEGTED INTERFACE CIRCUIT | 202

TO SEND REFERENCE VALUE TO CORRESPONDING
MIXER CIRCUITS (E.G., LOGIC ZERO)

¥

READ AND STORE QUTPUTS FROM MIXERS 204

¥ .
—) : : 206
SELECT AN INTERFACE CIRCUIT «

!

DIRECT THE SELECTED INTERFACE CIRCUIT
 TO SEND A MODIFIED REFERENCE VALUE TO ~ |—208
CORRESPONDING MIXER GIRCUIT (E.G., LOGIC ONE)

~214

¥

READ UPDATED QUTPUITS FROM MIXERS ~210

Y

COMPARE UPDATED MIXER OUTPUTS TO STORED [-—212
MIXER OUTPUTS TQ IDENTIFY ASSQCIATIONS
RETWEEN INTERFACE CIRCUITS AND DEVICES | UNIDENTIFIED

CONNECTIONS
REMAIN?
ALL CONNECTIONS
PROCESSED?
¥
FINISH

FIG. 7

U.S. Patent Aug. 2, 2016 Sheet 8 of 10

US 9,404,968 B1

220
/"

WITH HOST DEBUG EQUIPMERNT,

READ AND STORE QUTPUTS FROM MIXERS

¥

GENERATE REFERENCE VALUE OF BINARY ONE

004

Y

SELECT AN INTERFACE CIRCUIT

¥

PROVIDE REFERENCE VALUE TO
SELECTED INTERFACE CIRCUIT

L—~230 L —~232
ALL INTERFACES INTERFACES
PROCESSBED? REMAIN?
¥

234

\

BIT-5HIFT THE REFERENCE VALUE

\ 4

INTERFACE CIRCUHT

RETRIEVE MIXER OQUTPUTS FOR EACH

L_~236

¥

SAME DEVICE

IDENTIFY INTERFACE CIRCUITS HAVING IDENTICAL |
MIXER QUTPUTS AS BELONGING TO THE

—~238

FIG. 8

U.S. Patent Aug. 2, 2016 Sheet 9 of 10 US 9,404,968 B1

/ 250

WITH HOST DEBUG EQUIPMENT, Py
RECEIVE CONNECTIONS TO EXTERNAL DEVICES '

24
COMMUNICATE WITH MIXER CIRCUITRY IN THE
EXTERNAL DEVICES TO IDENTIFY DEVICES AND 254

WHICH CONNECTIONS BELONG TO EACH DEVICE

¥
SELECT CONNECTIONS TO USE FOR EACH DEVICE }
BASED ON PERFORMANCE AND CAPABILITIES 258
OF AVAILABLE CONNECTIONS

¥

PERFORM DEBUG TEST OPERATIONS USING | _-D58
SELECTED CONNECTIONS '

FIG. 9

U.S. Patent Aug. 2, 2016 Sheet 10 of 10 US 9,404,968 B1

f 300

RECEIVE CUSTOM LOGIC DESIGN ~302

A 4
IDENTIFY INTERFACE CIRCUITS OF THE CUSTOM | 34,
LOGIC DESIGN

Y
GENERATE MIXER CIRCUITRY SHARED BY THE | a0
IDENTIFIED INTERFACE CIRCUITS |

X

CONFIGURE DEVICE WITH THE | _~308
CUSTOM LOGIC DESIGN AND MIXER CIRCUITRY '

FIG. 10

US 9,404,968 B1

1
SYSTEM AND METHODS FOR DEBUG
CONNECTIVITY DISCOVERY

BACKGROUND

Programmable integrated circuits are a type of integrated
circuit that can be configured by a user to implement custom
logic functions. In a typical scenario, a logic designer uses
computer-aided design (CAD) tools to design a custom logic
circuit. When the design process is complete, the CAD tools
generate configuration data. The configuration data is loaded
into a programmable integrated circuit to configure the device
to perform desired logic functions.

Integrated circuits such as programmable integrated cir-
cuits can be connected to debug equipment for testing. The
integrated circuits can be connected using different protocols
and standards such as the Joint Test Action Group (JTAG)
standard, the Universal Serial Bus (USB) standard, the Eth-
ernet standard, and the Peripheral Component Interconnect
Express (PCle) standard. The debug equipment is used to test
the functions of the integrated circuits and identify faults.

Debug equipment can be connected to multiple different
devices to be tested. In addition, multiple connections can be
made between the debug equipment and any given device. It
can be challenging for the debug equipment to determine
which devices are associated with each connection, espe-
cially because devices such as programmable integrated cir-
cuits can be configured in many different ways and are
installed on many different types of boards.

SUMMARY

An integrated circuit device such as a programmable inte-
grated circuit may include interface circuits that interface
with external circuitry. The interface circuits may be USB
interface circuits, PCle interface circuits, Ethernet interface
circuits, JTAG interface circuits, or interface circuits handling
communications of any desired standard. The integrated cir-
cuit may include identification circuits each coupled to and
identifying a respective interface circuit. The identification
circuits may be coupled to shared mixer circuitry. Each iden-
tification circuit may store an identifier that identifies the type
of'the corresponding interface circuit. If desired, the identifier
may be generated based partly on configuration data loaded
into programmable elements of the integrated circuit so that
the identifier identifies both the type of the corresponding
interface circuit and the configuration of the device.

Each interface circuit may be coupled to one or more debug
agent circuits through which internal circuitry is accessed
during debug operations performed using that interface cir-
cuit. The debug agent circuits may include signal tap agent
circuits, memory-mapped agent circuits, or agent circuits for
performing any desired debug operations.

The mixer circuitry of each integrated circuit may include
combinational logic circuitry that performs a logic function
on mixer input signals received from the identification cir-
cuits of that integrated circuit to produce a mixer output
signal. The combinational logic circuitry may include a logic
XOR gate that receives the mixer input signals and produces
the mixer output signal. The mixer circuitry may include
clock crossing circuitry that interfaces between clock
domains of the interface circuits and the clock domain of the
mixer circuitry.

Debug computing equipment may be used to test integrated
circuits. The debug computing equipment may have inter-
faces that receive connections to interface circuits of the
integrated circuits. The debug computing equipment may

10

15

20

25

30

35

40

45

50

55

60

65

2

include storage and processing circuitry that uses the inter-
faces to communicate with the mixer circuitry of the inte-
grated circuits through each of the connected interface cir-
cuits. By communicating with the mixer circuitry of each of
the connected integrated circuits, the debug computing equip-
ment may identify groups of interfaces that are connected to
different devices. For example, the debug computing equip-
ment may provide reference values to the mixer circuitry and
retrieve mixer output signals to identify which groups of
interfaces are connected to different devices. For each device,
the debug computing equipment may select an interface from
the corresponding group of interfaces and perform test debug
operations over the selected interface. The interface may be
selected based on performance and/or functional capabilities
of the group of interfaces.

Further features of the present invention, its nature and
various advantages will be more apparent from the accompa-
nying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an illustrative programmable inte-
grated circuit that may be connected to debug equipment in
accordance with an embodiment of the present invention.

FIG. 2 is a diagram of an illustrative debug system in which
an integrated circuit may be connected to debug equipment
via multiple connections in accordance with an embodiment
of the present invention.

FIG. 3 is a diagram of an illustrative integrated circuit
having interface circuits that may be used to access internal
circuitry via debug agent circuits in accordance with an
embodiment of the present invention.

FIG. 4 is a diagram of an illustrative debug system in which
multiple integrated circuits may be connected to debug equip-
ment in accordance with an embodiment of the present inven-
tion.

FIG. 5 is a diagram of an illustrative integrated circuit
having interface circuits that are coupled to connection iden-
tifier circuits having shared mixer circuitry for identifying the
interface circuits and the integrated circuit during debug con-
nection operations in accordance with an embodiment of the
present invention.

FIG. 6 is a diagram of illustrative mixer circuitry having
clock crossing circuitry and combinational logic in accor-
dance with an embodiment of the present invention.

FIG. 7 is a flow chart of illustrative steps that may be
performed using host debug equipment to identify associa-
tions between interfaces and connected devices using mixer
circuitry at the connected devices in accordance with an
embodiment of the present invention.

FIG. 8 is a flow chart of illustrative steps that may be
performed using host debug equipment to identify associa-
tions between interfaces and connected devices using mixer
circuitry of the connected devices having XOR combina-
tional logic in accordance with an embodiment of the present
invention.

FIG. 9 is a flow chart of illustrative steps that may be
performed using host debug equipment to identify associa-
tions between interfaces and connected devices and select
connections for use during debug test operations in accor-
dance with an embodiment of the present invention.

FIG. 10 is a diagram of illustrative steps that may be per-
formed using logic design computing equipment to automati-
cally provide mixer circuitry for a custom logic design in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention relate to debug sys-
tems in which one or more devices such as integrated circuits

US 9,404,968 B1

3

may be connected to debug computing equipment for testing.
The integrated circuits may be digital signal processors,
microprocessors, application specific integrated circuits, or
other suitable integrated circuits. These types of debug sys-
tems can benefit from improved connectivity discovery such
as automatic identification of connections to test devices. The
test devices may include debug circuitry that communicates
with the debug computing equipment during initial connec-
tion operations.

As an example, one or more integrated circuits such as a
programmable integrated circuit may be connected to debug
computing equipment. This is merely illustrative and does not
serve to limit the scope of the present invention. If desired,
application specific integrated circuits, microprocessors, and
other application specific standard products may be coupled
to debug computing equipment for testing.

FIG. 1 shows a diagram of an illustrative programmable
integrated circuit device. As shown in FIG. 1, device 10 may
have input-output (I/O) circuitry 12 for driving signals off of
device 10 and for receiving signals from other devices via
input-output pins 14. Interconnection resources 16 such as
global and local vertical and horizontal conductive lines and
buses may be used to route signals on device 10. Intercon-
nection resources 16 include fixed interconnects (conductive
lines) and programmable interconnects (i.e., programmable
connections between respective fixed interconnects). Pro-
grammable logic 18 may include combinational and sequen-
tial logic circuitry. For example, programmable logic 18 may
include look-up tables, registers, and multiplexers. The pro-
grammable logic 18 may be configured to perform a custom
logic function. The programmable interconnects associated
with interconnection resources may be considered to be a part
of programmable logic 18.

Programmable logic 18 contains programmable elements
20. Programmable elements 20 may be based on any suitable
programmable technology, such as fuses, antifuses, electri-
cally-programmable read-only-memory technology, ran-
dom-access memory cells, mask-programmed elements, etc.
As an example, programmable elements 20 may be formed
from memory cells. During programming, configuration data
is loaded into the memory cells using pins 14 and input-output
circuitry 12. The memory cells are typically random-access-
memory (RAM) cells. Because the RAM cells are loaded
with configuration data, they are sometimes referred to as
configuration RAM cells (CRAM).

Programmable element 20 may be used to provide a static
control output signal for controlling the state of an associated
logic component in programmable logic 18. The output sig-
nals generated by elements 20 are often applied to gates of
metal-oxide-semiconductor (MOS) transistors (sometimes
referred to as pass gate transistors). This example is merely
illustrative. If desired, programmable elements 20 may be
used to provide static output signals for configuring any
desired circuitry on device 10.

The circuitry of device 10 may be organized using any
suitable architecture. As an example, logic 18 of program-
mable device 10 may be organized in a series of rows and
columns of larger programmable logic regions, each of which
contains multiple smaller logic regions. The logic resources
of device 10 may be interconnected by interconnection
resources 16 such as associated vertical and horizontal con-
ductors. These conductors may include global conductive
lines that span substantially all of device 10, fractional lines
such as half-lines or quarter lines that span part of device 10,
staggered lines of a particular length (e.g., sufficient to inter-
connect several logic areas), smaller local lines, or any other
suitable interconnection resource arrangement. I[f desired, the

10

15

20

25

30

35

40

45

50

55

60

65

4

logic of device 10 may be arranged in more levels or layers in
which multiple large regions are interconnected to form still
larger portions of logic. Other device arrangements may use
logic that is not arranged in rows and columns.

Input-output circuitry 12 and input-output pins 14 may be
used to interface with external circuitry or devices using
desired interface standards and protocols. FIG. 2 is a diagram
of an illustrative debug system 100 in which device 10 is
coupled to host debug computing equipment 102 via paths
104. Integrated circuit 10 may be mounted on a printed circuit
board (not shown). Paths 104 may include input-output pins
14 and input-output circuitry 12 (FIG. 1), and may include
cables that are connected between host debug equipment 102
and device 10. For example, a printed circuit board on which
integrated circuit 10 is mounted may include connectors to
which connectors of the cables are plugged. Similarly, the
cables may be plugged into connectors at host debug equip-
ment 102.

Device 10 may include interface circuits that handle off-
chip communications for various communications standards.
In the example of FIG. 2, device 10 includes Ethernet inter-
face circuits 106 and 108, Universal Serial Bus (USB) inter-
face circuit 110, Peripheral Component Interconnect Express
(PCle) interface circuit 112, and Joint Test Action Group
(JTAG) interface circuit 114. This example is merely illustra-
tive. In general, device 10 may include any desired number of
interface circuits for handling communications with external
(off-chip) circuitry. For example, device 10 may include one,
two, or more different interface circuits each handling com-
munications for a different respective communications stan-
dard. If desired, device 10 may include one, two, or more
different interface circuits each handling communications for
a given standard. In the example of FIG. 2, Ethernet interface
circuits 106 and 108 may each handle Ethernet communica-
tions over respective paths 104-1 and 104-2. Paths 104-1 and
104-2 may, for example, include Ethernet cables that are
coupled between host debug equipment 102 and integrated
circuit 10.

Host debug equipment 102 may be implemented using
computing equipment such as portable or stationary comput-
ing equipment (e.g., a laptop, desktop, etc.) computer and
may include communications circuitry 116 and storage and
processing circuitry 126.

Communications circuitry 116 may communicate with
integrated circuit 10 over paths 104 that are connected to
interfaces 117 of communications circuitry 116. Communi-
cations circuitry 116 may include Ethernet communications
circuitry 118, USB communications circuitry 120, PCle com-
munications circuitry 122, and JTAG communications cir-
cuitry 124 that may be coupled to interface circuits of device
10 via paths 104. The example of FIG. 2 in which host debug
equipment 102 communicates with integrated circuit 10
using Ethernet, USB, PCle, or JTAG is merely illustrative.
Host debug equipment 102 may include communications
circuitry 116 that handles communications using any desired
standard or protocol.

Host debug equipment 102 may include storage and pro-
cessing circuitry 126 that performs debug operations by com-
municating with device 10 using communications circuitry
116. Processing circuitry 126 may use communications cir-
cuitry 116 to send debug control commands to integrated
circuit 10 over one or more selected paths 104. Similarly, data
or other information received from device 10 may be con-
veyed to processing circuitry 126 using communications cir-
cuitry 116.

Host debug equipment 102 may include additional input/
output devices 130. Input-output devices 130 may include

US 9,404,968 B1

5

input devices such as mice, keyboards, joysticks, touchpads,
touchscreens, or other input devices and may include output
devices such as one or more displays, speakers, etc. Input-
output devices 130 may receive user input that is processed by
storage and processing circuitry 126. For example, a display
may be used to present an on-screen opportunity to a user for
entering debug commands or to interact with debug opera-
tions performed by storage and processing circuitry 126.
Input devices such as a keyboard or mouse may receive user
input such as debug commands. The user input may include
instructions to load or execute a debug program such as pro-
gram 128 at storage circuitry 126.

Interface circuits of device 10 may be coupled to and serve
as interfaces for on-chip circuitry as device memory 140,
storage and processing circuitry 141, and debug circuitry. For
example, on-chip device memory 140 such as random access
memory or programmable memory elements can be accessed
via the interface circuits. As another example, storage and
processing circuitry 141 such as programmable logic or dedi-
cated circuitry may be accessed via the interface circuits.
Each interface circuit may be coupled to on-chip circuits via
amultiplexer 142 that is controlled to convey signals between
selected on-chip circuitry and the corresponding interface
circuit. Each multiplexer 142 may include a control input that
receives a control input signal CTL that controls the multi-
plexer to select from on-chip circuitry that is coupled to the
multiplexer. The control input signals may be provided by the
interface circuits or may be provided by other circuitry such
as control circuitry on integrated circuit 10.

Debug circuitry that can be accessed via interface circuits
and multiplexers 142 may include identification (ID) cir-
cuitry 134 and debug agent circuits such as debug agents 132,
memory-mapped agent 136, and signal tap agent 138. The
debug agent circuits may be controlled by host debug equip-
ment 102 to perform debug operations such as testing or
monitoring of on-chip device functionality. For example,
memory-mapped or signal tap agents may be used to access
internal data or signals to identify errors in device functions.

FIG. 3 is a diagram of an illustrative integrated circuit 10
having debug agent circuits that can be controlled in perform-
ing debug operations on internal circuitry 154 of device 10.
As shown in FIG. 3, integrated circuit 10 may include inter-
face circuits 152 that interface between external (off-chip)
circuitry and on-chip circuitry. Each interface circuit may be
provided with access to one or more debug agents which, if
desired, may be shared between interface circuits. In the
example of FIG. 3, interface circuit 152-1 may be coupled to
memory-mapped agents 136 and signal tap agent 138 via a
first multiplexer 142, whereas interface circuit 152-2 may be
coupled to debug agent 132 and signal tap agent 138 via a
second multiplexer 142. Signal tap agent 138 may be shared
between interface circuits 152-1 and 152-2. This example is
merely illustrative. Interface circuit 152-1 may be coupled to
any desired combination of debug agents such as one, two,
three, or more memory-mapped agents, signal tap agents, etc.

Each memory-mapped agent 136 may serve as a memory-
mapped interface between external circuitry and internal reg-
isters such as control registers 156 and data registers 158.
Commands received from external circuitry may include read
and write commands that direct memory-mapped agent 136
to retrieve or store data at a specified address. Memory-
mapped agent 136 maps the specified address to a corre-
sponding register. For example, external host debug equip-
ment may send a write command to memory-mapped agent
136 via interface circuit 152-1. The write command may
specify data and the address of a given control register.
Memory-mapped agent 136 may receive the write command

10

15

20

25

30

35

40

45

50

55

60

65

6

and write the data to the given control register. The data
written to the control register may include control data that
controls the operation of internal circuitry 154 (e.g., the con-
trol data may initialize a debug test that is performed based on
settings provided in the control data). The host debug equip-
ment may issue one or more read commands to retrieve data
that is produced by internal circuitry 154 when performing
the debug test. The retrieved data may be used in verifying the
functionality of the internal circuitry.

Signal tap agent 138 may be used to monitor signals pass-
ing on data or control paths within internal circuitry 154. For
example, signal tap agent 138 may be coupled to signal paths
within internal circuitry such as programmable logic, inter-
connects, or dedicated circuitry. External host debug equip-
ment may send commands to signal tap agent 138 to monitor
one or more selected signal paths during debug operations.

Debug agent 132 may be a memory-mapped agent, a signal
tap agent, or other agents such as a debug interface for a
processor (e.g., a general purpose processor), a system
memory interface, etc. In general, each debug agent circuit
may receive commands from host debug equipment via inter-
face circuits and may be used to monitor or control internal
circuitry 154 during debug operations.

Each interface circuit may be coupled to a respective iden-
tification circuit 134 that can be used in identifying the inter-
face circuit. Identification circuitry 134 may include logic
circuitry and storage circuitry such as registers. The storage
circuitry may be used to store an identifier for the correspond-
ing interface circuit. The identifier may identify the type of
the corresponding interface. For example, the identifier may
identify whether the corresponding interface is a USB inter-
face, a ITAG interface, an Ethernet interface, a PCle interface,
etc. The identifier may identify the device to which the cor-
responding interface belongs. For example, a programmable
integrated circuit is typically loaded with configuration data
that configures the programmable integrated circuit to per-
form a desired function. In this scenario, the identifier may be
generated from a hash of the configuration data (e.g., different
hash values are generated for different configuration data).
The device hash value may be combined with the interface
type information to generate the identifier that is stored in
identification circuitry 134. The identifier may be retrieved by
external circuitry such as host debug equipment when initial-
izing connections between the host and devices to help deter-
mine which connections are associated with each device.

Host debug computing equipment may be used to perform
debug operations on multiple different devices. FIG. 4 is a
diagram of an illustrative debug system 200 in which host
debug computing equipment 102 is coupled to devices 10-1,
10-2, 10-3, and 10-4. Each device may be coupled to host
debug equipment 102 via a corresponding path 106. As shown
in FIG. 4, each device may communicate with host debug
equipment using one or more communications standards.
Device 10-1 and 10-2 may each include a USB interface
circuit that communicates with USB communications cir-
cuitry 120. Device 10-4 may include a PCle interface circuit
that communicates with PCle communications circuitry 122
and may include an Ethernet interface circuit that is coupled
to Ethernet communications circuitry 118. Device 10-3 may
include a JTAG interface circuit that communicates with
JTAG communications circuitry 124 and may include mul-
tiple Ethernet interface circuits that are coupled to Ethernet
communications circuitry 118 via respective paths 106 (e.g.,
different Ethernet cables may be plugged into device 10-3).

The communications standards used to connect a given
device to host debug equipment may be limited by the capa-
bilities of the given device and the host debug equipment. For

US 9,404,968 B1

7

example, device 10-1 may have only USB interface circuits
that can be connected to host debug equipment 102 via a USB
cable. This example is merely illustrative. Device 10-1 may
include additional interface circuits for other standards that
are merely unused (e.g., no cable has been connected between
the additional interface circuits and host debug equipment
102).

During connection operations such as during initial startup
of debug system 200 or when a user connects or disconnects
paths 106, it can be challenging for host debug equipment 102
to correctly identify which connections are associated with
each debug agent 132. For example, devices 10-4 and 10-3
may be programmable logic devices that have each been
loaded with identical configuration data. In this scenario, the
hash values generated from the configuration data and stored
in identification circuits may be the same for devices 10-3 and
10-4. It can therefore be difficult for host debug equipment
102 to differentiate between connections to device 10-3 and
device 10-4, especially when both devices are coupled to host
debug equipment 102 via connections of the same type (e.g.,
device 10-3 and 10-4 may be coupled to host debug equip-
ment 102 via Ethernet connections). In addition, paths 106
can be dynamically connected or disconnected. For example,
users can connect and disconnect cables at any given time. In
response to a change of system state such as updated device
connections, host debug equipment 102 may be required to
resolve potential connection conflicts.

Integrated circuits may be provided with connection iden-
tifier circuits having shared mixer circuitry. The shared mixer
circuitry may be used by host debug equipment during con-
nection setup operations to differentiate between connections
to different devices (e.g., even when the devices are loaded
with identical configuration data). FIG. 5 is a diagram of an
illustrative integrated circuit 10 having connection identifier
circuits 134 that are coupled to shared mixer circuitry 164 via
paths 166.

As shown in FIG. 5, each connection identifier circuit 134
may be coupled to a respective interface circuit 152 via a
selection circuit 162. Selection circuits 162 may be multi-
plexers such as multiplexer 142 of FIG. 3 or may be any
desired selection circuits that selectively couple interface cir-
cuits 152 to internal circuitry. Each selection circuit 162 may
be coupled to one or more debug agents 132.

Mixer circuitry 164 may receive input signals from con-
nection identifier circuits 134 via paths 166 and combine the
inputs to form a mixer output signal. The mixer output signal
may be used to help differentiate between devices, as adjust-
ments to the mixer input signals provided by the connection
identifier circuits are only reflected at one of the devices. In
other words, external host debug equipment can differentiate
between devices by manipulating one or more mixer input
signals and observing the mixer output signals across all
connected devices.

If desired, mixer circuitry 164 may communicate directly
with external circuitry using optional paths such as path 168
that are coupled between selection circuits 162 and mixer
circuitry 164 (e.g., bypassing connection identifier circuits
134). For example, mixer input signals may be provided
directly by external host debug equipment over paths such as
path 168 instead of being routed through connection identifier
circuits 134.

Each interface circuit 152 that is coupled to mixer circuitry
164 may potentially belong to different clock domains that
operate using different clock signals CLK1, CLK2, and
CLK3. As examples, Ethernet interface circuits may operate
using clock signals at 2.5 MHz, 20 MHz, 25 MHz, 50 MHz,
and 125 MHz, JTAG interface circuits may operate using

10

15

20

25

30

35

40

45

50

55

60

65

8

clock signals at 10-100 MHz, USB interface circuits may
operate at a clock frequency of 6 MHz, 12 MHz, or 24 MHz,
and PCle interface circuits may operate at a clock speed of
100 MHz. These examples are merely illustrative. Each inter-
face circuit may belong to any desired clock domain and
operate at any clock frequency based on the type or desired
function of the interface circuits.

If desired, mixer circuitry 164 may operate using optional
clock signal CLK4. Clock signal CLK4 may be the same as
clock signal CLK1, CLLK2, or CLK3 or may have a different
frequency or phase. If desired, mixer circuitry 164 may be
provided that is not controlled by a clock signal such as clock
signal CLK4. Mixer circuitry 164 that is not controlled by a
clock signal may be capable of handling scenarios such as
when clock signals are unavailable (e.g., due to disconnection
of external circuitry such as disconnection of one or more
paths 106 of FIG. 3).

Mismatch in frequency or phase of clock signals for dif-
ferent interface circuits 152 can cause communications errors
at mixer circuitry 164 that combines signals from multiple
interface circuits. Mixer circuitry 164 may be provided with
clock crossing circuitry that accommodates mismatch
between clock signals of different interface circuits. FIG. 6 is
a diagram of illustrative mixer circuitry 164 that may be
shared between selection circuits such as selection circuits
162 of F1G. 5 (and between interface circuits such as interface
circuits 152). As shown in FIG. 6, mixer circuitry 164 may
include clock crossing circuits 172, and combinational logic
174.

Clock crossing circuits 172 may be used to interface
between clock domains. Each clock crossing circuit 172 may
handle data transfer between the clock domain of a corre-
sponding interface circuit and the clock domain of mixer
circuitry 164 (sometimes referred to as clock crossing). Clock
crossing circuit 172 may, for example, include asynchronous
clock crossing circuitry such as an asynchronous first-in-first-
out (FIFO) buffer that operates using the clock signals of
mixer circuitry 164 (e.g., CLLK4) and the corresponding inter-
face circuit (e.g., CLK1, CLK2, or CLK3). This example is
merely illustrative. If desired, clock crossing circuit 172 may
include synchronous or pseudo-synchronous circuitry such
as a series of flip-flops in which a first portion of the flip-flops
are clocked using the clock signal of the interface circuit and
a second portion of the flip-flops are clocked using the clock
signal of the mixer circuitry.

Mixer input signals IN1, IN2, and IN3 received via paths
166 may be processed by clock crossing circuits 172 and
provided to combinational logic 174. Combinational logic
174 may perform a logic function on the input signals to
produce output signal OUT. Mixer output signal OUT may be
provided via paths 166 to other circuitry such as connection
identifier circuit 134 or interface circuit 152. If desired,
optional storage circuitry such as register 176 may be used to
store mixer output signal OUT. Optional register 176 may
receive optional clock signal CLK4 and store mixer output
signal OUT based on clock signal CLK4. For example, reg-
ister 176 may be triggered to store output signal OUT by
edges or levels of clock signal CLK4.

If desired, clock crossing circuits 172 may be provided in
only one direction between mixer circuitry 164 and interface
circuits. For example, clock crossing circuits 172 may receive
and pass input signals from interface circuits to combina-
tional logic 174, whereas output signal OUT may be provided
to paths 166 without traversing clock crossing circuits 172
(e.g., output signal OUT may be passed to paths 166 directly
from combinational logic 174). As another example, output
signal OUT may traverse clock crossing circuits 172, whereas

US 9,404,968 B1

9

input signals IN1, IN2, and/or IN3 may be provided directly
to combinational logic 174 from paths 166.

In the example of FIG. 6, combinational logic 174 includes
an XOR gate 178 that performs an XOR function on input
signals IN1, IN2, and IN3 to produce output signal OUT.
However, this example is merely illustrative. Combinational
logic 174 may include any desired logic gate such as AND
gates, OR gates, NAND gates, NOR gates, etc. In general, any
suitable arrangement of logic gates may be used to perform a
desired logic function on the mixer input signals to produce
output signal OUT (e.g., a single logic gate, multiple logic
gates coupled in successive stages, etc.).

The example of FIG. 6 in which three input signals are
received and processed by mixer circuitry 164 is merely illus-
trative. Mixer circuitry 164 may receive any desired number
of input signals (e.g., from connection identifier circuits or
interface circuits).

FIG. 7 is a flow chart 200 of illustrative steps that may be
performed using host debug equipment such as host debug
equipment 102 of FIG. 2 during initial connection operations.
For example, the host debug equipment may perform the
steps of flow chart 200 in response to detecting that one or
more new connections to an electronic device have been made
(e.g., in response to establishment of paths 106).

During step 202, the host debug equipment may direct each
connected interface circuit to send a reference value to a
corresponding mixer circuit. For example, the reference value
may be zero (e.g., all bits are logic zero) or other predeter-
mined reference value. In scenarios in which the host debug
equipment is not connected to a given interface circuit (e.g.,
no cable is plugged in for that interface circuit), the mixer
circuit may use a predetermined default reference value such
as logic zero to help ensure that the mixer output value is
determined by the reference values provided by the host
debug equipment.

During step 204, the host debug equipment may read and
store the output signals from the registers of the mixer cir-
cuitry. The host debug equipment may retrieve the output
signals by communicating with connection identifier circuits
134 (e.g., sending a request for the register data from the
connection identifier circuits). The host debug equipment
may retrieve mixer output signals for each interface circuit
that is coupled to the host debug equipment (e.g., for each
connection between the host debug equipment and the
devices). For example, in the scenario of FIG. 4, host debug
equipment 102 may retrieve a first mixer output signal from
device 10-1 (e.g., by communicating with a USB interface
circuit at device 10-1), a second mixer output signal from a
USB interface circuit at device 10-2, a third mixer output
signal from a PCle interface circuit at device 10-4, a fourth
mixer output signal from an Ethernet interface circuit at
device 10-4, a fifth mixer output signal from a first Ethernet
interface circuit at device 10-3, a sixth mixer output signal
from a second Ethernet interface circuit at device 10-3, and a
seventh mixer output signal from a JTAG interface circuit at
device 10-3.

During step 206, the host debug equipment may select an
interface circuit (e.g., by selecting an interface of the host
debug equipment such as interfaces 117 of FIG. 2 that is
connected to the interface circuit) for processing. During
subsequent step 208, the host debug equipment may use the
appropriate interface to direct the selected interface circuit to
send a modified reference value to a corresponding mixer
circuit. The modified reference value may be selected based
on the combinational logic implemented in the mixer cir-
cuitry of the devices. In the scenario of FIG. 6 in which the
mixer circuitry uses a logic XOR gate to process mixer input

10

20

25

30

35

40

45

55

60

65

10

signals, the host debug equipment may provide an inverted
reference value at the appropriate interface to the selected
interface circuit. In this scenario, the inversion of a mixer
input signal causes the logic XOR gate to produce an inverted
mixer output signal.

During step 210, the host debug equipment may retrieve
updated output signals from the mixer circuitry of each con-
nected interface circuit. During subsequent step 212, the host
debug equipment may compare the updated output signals to
the stored mixer outputs to identify which interface circuits
belong to the same device as the selected interface circuit. The
interface circuits associated with the same device as the
selected interface circuit may be identified because the mixer
output signals for those interface circuits are different from
the stored mixer output signals. Interface circuits that do not
belong to the same device as the selected interface circuit do
not share mixer circuitry with the selected interface circuit
and are therefore unaftected by the modified reference value
provided to the selected interface circuit.

If unidentified interface circuits remain at the completion
of step 212, the process may return to step 206 via path 214.
For example, if interface circuits remain that have yet been
grouped as belonging to a device, the process may return to
step 206 to select from the remaining, unidentified interface
circuits. If all interface circuits have been processed (all con-
nections have been processed), the operations of flow chart
200 may be complete.

If desired, the steps performed by host debug equipment to
identify associations between interfaces of the host debug
equipment and devices may be optimized based on the
arrangement of combinational logic circuitry within the
mixer circuitry of the devices. FIG. 8 is a flow chart 220 of
illustrative steps that may be performed by host debug equip-
ment to identify groups of device interfaces from mixer cir-
cuitry including XOR combinational logic. The steps of flow
chart 220 may, for example, be performed for connected
devices having mixer circuitry 164 of FIG. 6 in which com-
binational logic 174 includes logic XOR gate 178 that com-
bines signals from interface circuits.

During step 222, the host debug equipment may read and
store output signals from the mixers. During subsequent step
224, the host debug equipment may generate a reference
value of binary one. The number of bits in the reference value
may correspond to the number of interface circuits that are or
may be connected to the host debug equipment. For example,
in the scenario of FIG. 4 in which seven interface circuits are
connected between host debug equipment 102 and devices
10, the binary reference value may be “0000001.” During step
226, the host debug equipment may select an interface circuit
for processing. During subsequent step 228, the host debug
equipment may provide the reference value to the selected
interface circuit (e.g., similar to step 208 of flow chart 200 of
FIG. 7). If connected interface circuits remain to be processed
(e.g., by providing reference values to the interface circuits),
the operations of step 234 may be performed. If all connected
interface circuits have been processed, the operations of step
236 may be performed.

During step 234, the host debug equipment may bit-shift
the current reference value. For example, a binary reference
value of “0000001” may be bit-shifted to “0000010,” whereas
a binary reference value of “0000010” may be bit-shifted to
“0000100.” Such encoding of reference values may some-
times be referred to as one-hot encoding. The process may
then return to step 226 to process the remaining interface
circuits.

During step 236, the host debug equipment may retrieve
the mixer outputs for each interface circuit (e.g., one mixer

US 9,404,968 B1

11

output value is associated with each interface circuit). Due to
the one-hot encoding of reference values provided to each
interface circuit, the logic XOR gate of each device produces
a different mixer output value that is shared among the inter-
face circuits of that device. During subsequent step 238, the
host debug equipment may identify interface circuits having
identical mixer outputs as belonging to the same device.

Consider the scenario of FIG. 4 and in which each device
includes mixer circuitry with an XOR logic gate that produces
a mixer output value. In this scenario, a sequence of bit-
shifted reference values “0000001,” “0000010,” <0000100,”
“0001000,” <“0010000, “0100000,” and *“1000000” may pro-
vided via the USB interface of the host debug equipment that
is connected to device 10-1, the USB interface connected to
device 10-2, the PCle interface connected to device 10-4, the
Ethernet interface connected to device 10-4, a first Ethernet
interface connected to device 10-3, a second Ethernet inter-
face connected to device 10-3, and the JTAG interface con-
nected to device 10-3, respectively. In this scenario, the mixer
output value of device 10-1 may be “0000001,” the mixer
output value of device 10-2 may be “0000010,” the mixer
output value for each interface circuit of device 10-4 may be
“0001100,” and the mixer output value of each interface cir-
cuit of device 10-3 may be “1110000.” The interface circuits
of different devices may therefore be distinguished by the
mixer output values.

The above example in which seven interface circuit con-
nections are made is merely illustrative. In scenarios such as
when only a subset of the available interface circuits are
connected to the host debug equipment, expected mixer out-
put values may be determined from previously retrieved
mixer output signals (e.g., during step 222) and the generated
reference values (e.g., from step 224).

Mixer output signals retrieved and stored during step 222
may be used to help determine whether reference values are
correctly provided to mixer circuitry of the connected
devices. For example, the mixer output values retrieved dur-
ing step 236 may be compared to expected possibilities given
the reference values provided during step 228. Reference
values such as “0000000” that are not possible given a one-
hot input encoding and the XOR gate of the mixer circuitry
may be identified and the mixer output signals stored during
step 222 may be used to help determine which reference
values were incorrectly provided to mixer circuitry (e.g.,
thereby also identifying faulty connections or interface cir-
cuits).

By identifying associations between connections and
devices, host debug equipment may be able to select optimal
connections for use during debug test operations. Debug test
operations include any desired test operations such as mea-
surements performed on internal circuitry of the test device.
FIG. 9 is a flow chart 250 of illustrative steps that may be
performed by host debug equipment to select connections for
use in performing debug test operations.

During step 252, the host debug equipment may receive
connections to devices such as programmable integrated cir-
cuits having mixer circuitry. For example, the host debug
equipment may receive and detect cables that are plugged in
to corresponding ports at the host debug equipment and at the
devices (e.g., ports at the devices for respective device inter-
faces).

During step 254, the host debug equipment may commu-
nicate with the devices to determine which groups of connec-
tions are associated with different devices. The host debug
equipment may access mixer circuitry at the devices to iden-
tify groups of connections. For example, the steps of flow
chart 200 of FIG. 7 or flow chart 220 of FIG. 8 may be

10

15

20

25

30

35

40

45

50

55

60

65

12

performed to identify associations between connections (e.g.,
connections to device interfaces) and devices.

During step 256, the host debug equipment may select
connections to use for each device based on performance and
capabilities of available connections to that device. The capa-
bilities of each connection may be predefined by the corre-
sponding communications standard, by the capabilities of
communications circuitry at host debug equipment 102, or
determined from information retrieved from the connected
devices (e.g., host debug equipment 102 may send a request
or otherwise retrieve interface communications capabilities
from the interface circuits of each device). As examples, PCle
communications speeds may be 250 MBps (megabytes per
second) for each PCle lane of a connection, Ethernet com-
munications speeds may be 10 Mbps to 100 Gbps (gigabits
per second), USB communications speeds may be 1.5-5000
Mbps (megabits per second), and JTAG communications
speeds may be 1 Mbps. Connections such as JTAG connec-
tions may be functional during initial start-up operations of an
external device and may be selected to perform debug testing
during start-up (e.g., in contrast to interfaces such as Ethernet
that function after initial start-up).

Consider the scenario of FIG. 2 in which a Ethernet, USB,
PCle, and JTAG connections are identified be host debug
equipment 102 and device 10. In this scenario, host debug
equipment 102 may identify the performance and functional
capabilities of each connection to determine which connec-
tion should be used for executing debug program 128. If the
debug program includes tests that are to be performed during
initial start-up of device 10, an appropriate connection such as
JTAG connection 104-5 may be selected. If multiple connec-
tions have functional capabilities that satisfy the require-
ments of debug program 128, the connection may be selected
based on performance metrics such as communications
speeds (e.g., data transfer rates).

During step 258, the host debug equipment may perform
debug test operations using the selected connections for each
device (e.g., by executing one or more debug programs stored
at the host debug equipment).

It can be a significant undertaking to design and implement
a desired logic circuit in a programmable logic device. Logic
designers therefore generally use logic design systems based
on computer-aided-design (CAD) tools to assist them in
designing circuits. A logic design system (sometimes referred
to as a circuit design system) can help a logic designer design
and test complex circuits for a system. When a design is
complete, the logic design system may be used to generate
configuration data for electrically programming the appropri-
ate programmable logic device. The logic design system may
be implemented on computing equipment.

FIG. 10 is a diagram of illustrative steps that may be per-
formed using logic design computing equipment to automati-
cally provide mixer circuitry for a custom logic design. Dur-
ing step 302, the logic design computing equipment may
receive a custom logic design (e.g., from a user). During step
304, the logic design computing equipment may identify
interface circuits of the custom logic design. In other words,
the logic design computing equipment may determine
whether interface circuits exist in the custom logic design and
may proceed to step 306 in response to identifying interface
circuits in the custom logic design. As an example, interface
circuits that serve as interfaces with external circuitry may be
identified. During subsequent step 306, the logic design com-
puting equipment may generate mixer circuitry such as mixer
circuitry 164 of FIG. 5 that is shared by the identified interface
circuits. For example, configuration data for the mixer cir-
cuitry may be generated and added to configuration data for

US 9,404,968 B1

13

the custom logic design. An identification circuit may be
generated for each interface circuit (e.g., such that each inter-
face circuit is coupled to the mixer circuitry via a respective
identification circuit). During step 308, the logic design com-
puting equipment may configure the programmable logic
device with the custom logic design and the mixer circuitry
(e.g., by loading the configuration data onto the device).

The foregoing is merely illustrative of the principles of this
invention and various modifications can be made by those
skilled in the art without departing from the scope and spirit of
the invention. The foregoing embodiments may be imple-
mented individually or in any combination.

What is claimed is:

1. An integrated circuit comprising:

a plurality of interface circuits that interface with external

circuitry;

a plurality of identification circuits each coupled to and

identifying a respective interface circuit; and

mixer circuitry shared between the plurality of identifica-

tion circuits, wherein the mixer circuitry receives mixer
input signals from the identification circuits and gener-
ates a mixer output signal from the received input sig-
nals.

2. The integrated circuit defined in claim 1 wherein the
integrated circuit comprises a programmable integrated cir-
cuit having programmable elements in which configuration
data is loaded and wherein each identification circuit of the
plurality of identification circuits stores an identifier gener-
ated at least partly based on the configuration data.

3. The integrated circuit defined in claim 2 wherein each
interface circuit is coupled to at least one debug agent circuit
through which internal circuitry is accessed during debug
operations performed using that interface circuit.

4. The integrated circuit defined in claim 3 wherein the
mixer circuitry comprises combinational logic circuitry that
performs a logic function on the mixer input signals received
from the identification circuits to produce the mixer output
signal.

5. The integrated circuit defined in claim 4 wherein the
mixer circuitry is not controlled by any clock signal.

6. The integrated circuit defined in claim 4 further com-
prising storage circuitry that receives and stores the mixer
output signal.

7. The integrated circuit defined in claim 6 wherein the
mixer circuitry further comprises a clock crossing circuit that
interfaces between a first clock domain of the interface cir-
cuits and a second clock domain of the mixer circuitry.

8. The integrated circuit defined in claim 4 wherein the
combinational logic circuitry comprises a logic XOR gate.

9. The integrated circuit defined in claim 3 wherein at least
one interface circuit is coupled to a signal tap agent circuit.

10. The integrated circuit defined in claim 3 wherein at
least one interface circuit is coupled to a memory-mapped
agent circuit.

11. The integrated circuit defined in claim 1 wherein the
plurality of interface circuits include at least one interface
circuit selected from the group consisting of: a USB interface
circuit, a PCle interface circuit, an Ethernet interface circuit,
and a JTAG interface circuit.

12. A method of operating debug computing equipment
having a plurality of interfaces, the method comprising:

with the plurality of interfaces, receiving connections to

interface circuits of external devices, wherein each ofthe
external devices includes mixer circuitry that is shared
between the interface circuits of that external device;
and

15

30

40

45

55

60

14

with the plurality of interfaces, communicating with the
mixer circuitry through each of the connected interface
circuits to identify groups of interfaces that are con-
nected to different external devices.

13. The method defined in claim 12 further comprising:

selecting an interface from the group of interfaces for a

given one of the external devices; and

performing debug test operations over the selected inter-

face.

14. The method defined in claim 13 wherein selecting the
interface from the group of interfaces for the given external
device comprises:

selecting the interface from the group of interfaces for the

given one of the external devices based on performance
capabilities of the group of interfaces for the given exter-
nal device.

15. The method defined in claim 14 wherein selecting the
interface from the group of interfaces for the given one of the
external devices comprises:

selecting the interface from the group of interfaces for the

given one of the external devices based on functional
capabilities of the group of interfaces for the given one of
the external devices.

16. The method defined in claim 12 wherein communicat-
ing with the mixer circuitry through each of the connected
interface circuits to identify the groups of interfaces that are
connected to different external devices comprises:

directing each connected interface circuit to provide a ref-

erence value to the mixer circuitry of that connected
interface circuit; and

retrieving mixer output signals for each connected inter-

face circuit.

17. The method defined in claim 16 wherein communicat-
ing with the mixer circuitry through each of the connected
interface circuits to identify the groups of interfaces that are
connected to different external devices further comprises:

selecting an interface circuit;

directing the selected interface circuit to provide a modi-

fied reference value to the mixer circuitry of the selected
interface circuit; and

retrieving updated mixer output signals for each connected

interface circuit.

18. The method defined in claim 17 wherein communicat-
ing with the mixer circuitry through each of the connected
interface circuits to identify the groups of interfaces that are
connected to different external devices further comprises:

comparing the updated mixer output signals to the mixer

output signals to identify the groups of interfaces that are
connected to different external devices.

19. The method defined in claim 16 wherein the reference
values provided to the interface circuits comprise a sequence
of bit-shifted reference values.

20. Host debug computing equipment comprising:

aplurality of interfaces that receive connections to external

devices; and

storage and processing circuitry that communicates with

the external devices over the plurality of interfaces to
determine which interfaces are associated with each
external device.

21. The host debug computing equipment defined in claim
20 wherein the storage and processing circuitry generates a
plurality of reference values each provided from a respective
interface to the external device connected to the respective
interface, wherein the storage and processing circuitry
retrieves output values from the external devices that have
been generated based on the plurality of reference values, and
wherein the storage and processing circuitry determines

US 9,404,968 B1
15

which interfaces are associated with each external device
based on the retrieved output values.
22. The host debug computing equipment defined in claim
21 wherein the plurality of reference values comprises a
sequence of bit-shifted reference values. 5
23. A method of configuring a programmable integrated
circuit using a logic design computing equipment, the method
comprising:
receiving a custom logic design for the programmable
integrated circuit; 10
identifying interface circuits of the custom logic design;
and
generating mixer circuitry that is coupled to each of the
identified interface circuits, wherein generating the
mixer circuitry comprises: 15
generating an XOR circuit having inputs that are respec-
tively coupled to each of the identified interface cir-
cuits and having an output that is coupled to each of
the identified interface circuits.
24. The method defined in claim 23 further comprising: 20
configuring the programmable integrated circuit with the
custom logic design and the generated mixer circuitry.
25. The method defined in claim 23 further comprising:
for each identified interface circuit, generating an identifi-
cation circuit that identifies that interface circuit, 25
wherein each of the identification circuits is coupled to
the mixer circuitry.

#* #* #* #* #*

